The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group
نویسندگان
چکیده
A combinatorial bijection is given between pairs of permutations in S, the product of which is a given n-cycle and two-coioured plane edge-rooted trees on n edges, when the numbers of cycles in the disjoint cycle representations of the permutations sum to n + 1. Thus the corresponding connection coefficient for the symmetric group is determined by enumerating these trees with respect to appropriate characteristics. This is extended to the case of m-tuples of permutations in S, the product of which is a given n-cycle, in which the combinatorial objects replacing trees are cacti of m-gons.
منابع مشابه
Bases for certain cohomology representations of the symmetric group
We give a combinatorial description (including explicit differential-form bases) for the cohomology groups of the space of n distinct nonzero complex numbers, with coefficients in rank-one local systems which are of finite monodromy around the coordinate hyperplanes and trivial monodromy around all other hyperplanes. In the case where the local system is equivariant for the symmetric group, we ...
متن کاملEnumeration of m-ary cacti according to their color and degree distributions
We enumerate cyclically colored m-gonal plane cacti (called m-ary cacti) according to the degree distribution of vertices of each color. This combinatorial problem is motivated by the topological classification of complex polynomials having at most m critical values, studied by Zvonkin and others. The corresponding problem for rooted m-ary cacti has been solved by Goulden and Jackson in connect...
متن کاملOn the Matchings-Jack Conjecture for Jack Connection Coefficients Indexed by Two Single Part Partitions
This article is devoted to the study of Jack connection coefficients, a generalization of the connection coefficients of the classical commutative subalgebras of the group algebra of the symmetric group closely related to the theory of Jack symmetric functions. First introduced by Goulden and Jackson (1996) these numbers indexed by three partitions of a given integer n and the Jack parameter α ...
متن کاملCombinatorial Aspects of Elliptic Curves Ii: Relationship between Elliptic Curves and Chip-firing Games on Graphs
Let q be a power of a prime and E be an elliptic curve defined over Fq. In [17], the present author examined a sequence of polynomials which express the Nk’s, the number of points on E over the field extensions Fqk , in terms of the parameters q and N1 = #E(Fq). These polynomials have integral coefficients which alternate in sign, and a combinatorial interpretation in terms of spanning trees of...
متن کاملA noncommutative symmetric system over the Grossman-Larson Hopf algebra of labeled rooted trees
In this paper, we construct explicitly a noncommutative symmetric (NCS) system over the Grossman-Larson Hopf algebra of labeled rooted trees. By the universal property of the NCS system formed by the generating functions of certain noncommutative symmetric functions, we obtain a specialization of noncommutative symmetric functions by labeled rooted trees. Taking the graded duals, we also get a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 13 شماره
صفحات -
تاریخ انتشار 1992